
#ONOSProject

The Open Network Operating System

Carmelo Cascone, Andrea Campanella, Andrea Biancini

Politecnico di Milano, Università degli studi di Milano & ON.Lab, Reti S.p.a.

CommTech Talks, DEIB, Politecnico di Milano

October 25, 2016

#ONOSProject

Outline

2

- Why do we need a network OS?
- Motivating the need for Software-Defined Networking

- ONOS overview
- Architecture
- APIs
- Applications

- Demo
- Deployments and use cases
- Community & how to get involved

#ONOSProject

What is ONOS?

Open Network Operating System (ONOS) is an open
source Software-Defined Network (SDN) operating
system...

3

What is SDN? Why do we need a network OS?

#ONOSProject

Basic network abstractions

4

● Data plane
○ Basic packet forwarding functionality

■ Forward, filter, buffer, mark, rate-limit, and measure packets
○ Usually implemented in hardware
○ Uses only local information

■ f(pkt header, input port) ➔ output port or drop
○ Usually abstracted with tables

■ E.g. routing tables, switching tables, ACLs, etc.

● Control plane
○ Compute the configuration of each physical device

■ E.g routing, isolation, traffic engineering
○ Usually implemented in software
○ Based on global information

■ E.g. f(net topology graph, weights) ➔ routing table

This talk & ONOS Router or switch

Data plane

Control plane

#ONOSProject

Forwarding HW

Traditional networking paradigm

5

Forwarding HW

Control functions
E.g. routing, isolation, traffic engineering

Router or switch

Forwarding HWData plane

Control plane

State distribution mechanism
E.g. topology, link utilization

Standard protocol
Standard protocol 2

Standard protocol 3

#ONOSProject

Designing control functions

6

Given a network of arbitrary topology and size...
1. Design a distributed algorithm

○ Each device has the same topology view, is aware of link failures...

2. Handle communication errors
○ Network is unreliable: packets dropped, arrive out of sync...

3. Define a communication protocol
4. Wait for standardization
5. Wait for vendors to adopt the standard

It takes years... What if there’s a bug?

E.g. to define a new routing protocol

#ONOSProject

Closed market (until 2008)

7

Specialized packet
forwarding HW

Operating System

Feature Feature

Same vendor, closed platform

Little ability for small players and
researchers to implement or try
new features.

#ONOSProject

Software-Defined Networking (2008)

8

What is all about?
The “Scott Shenker view”:
● Define software abstractions that can be reused when

building control plane functions
○ State distribution abstraction

■ Solve the problem once, for every function
○ Forwarding abstraction

■ Control the data plane in a vendor-independent manner

How?
● Separation and centralization of the control plane

#ONOSProject

SDN Architecture

Forwarding HW Forwarding HW

Forwarding HW

Forwarding HW

App App App

Forwarding API

Network OS

Control plane

Data plane

Topology graph + metadata
Logically centralized

i.e. distributed Handles state distribution,
data plane configuration
management, error
recovery...

#ONOSProject

Designing control functions with SDN

10

Given a network of arbitrary topology and size:
1. Write an algorithm over a data structure

○ The topology graph, annotated with metadata

2. Program it via a software API
3. What if there’s a bug?

○ Solve it and push a software update!

SDN enables innovation at the speed of
writing and deploying software!

E.g. to define a new routing protocol

#ONOSProject

SDN Virtualization

Forwarding HW Forwarding HW

Forwarding HW

Forwarding HW

App App App

Forwarding abstraction

Network OS

Control plane

Data plane

Topology graph + metadataVirtualization

#ONOSProject

OpenFlow (2008)

12

Match-action table

2) Packet/port notifications

1) Install/update rules

Packet

Network OS

ɟ
 contro

l c
hannel

● The most prominent SDN forwarding abstraction
○ But not the only one...

IP src IP dest TCP dest ... Actions

192.168/16 10/8 any … Port 2

192.168/16 any 80 … Rate limit, Port 13

any 192.168/16 22 … Drop

any any any … Send to controller

#ONOSProject

SDN Ecosystem Today

13

● Wide adoption in data center networks
○ Google, Facebook, Microsoft, etc.

● Big service providers starting to transition their networks
○ AT&T “Domain 2.0” project, Verizon, Deutsche Telekom, etc.
○ Becoming more software company

● White-box switching market
○ New vendors offer cheap, off-the-shelf OpenFlow HW switches
○ Facebook OCP project open sourced a HW design for a SDN switch

● New players in the “softwarized” networking market
○ VMware offers an SDN virtualization solution called NSX

#ONOSProject

What is ONOS?

14

● SDN network OS
● Provides abstractions to make it easy to create apps and

service to control a network.
● Designed for scalability, high availability, and

performance.
● Focus on service provider networks, but not limited to it

#ONOSProject

Key Performance Requirements

 ONOS

AppsApps

Global Network View / StateGlobal Network View / State

high throughput | low latency | consistency | high availability

High Throughput:
 ~500K-1M paths setups / second
 ~3-6M network state ops / second

High Volume:
~500GB-1TB of network state data

Difficult challenge!

15

#ONOSProject

Architectural Tenets
● High-availability, scalability and performance

○ required to sustain demands of service provider & enterprise
networks → valid also for datacenters

● Strong abstractions and simplicity
○ required for development of apps and solutions

● Protocol and device behaviour independence
○ avoid contouring and deformation due to protocol specifics

● Separation of concerns and modularity
○ allow tailoring and customization without speciating the

code-base

16

#ONOSProject

ONOS Architecture

NB Core API

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

AppsApps

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

NB Core API

17

Multiple device Plugins Multiple device Plugins Multiple device Plugins Multiple device Plugins

#ONOSProject

OSGI / Apache Karaf

ONOS distributed applications platform

ONOS networking core

ONOS applications

GUI REST API
C

o
m

m
an

d
 Lin

e

ONOS Interfaces

18

#ONOSProject

Distributed Core

19

NB Core API

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

AppsApps

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

NB Core API

Multiple device
Plugins

Multiple device
Plugins

Multiple device
Plugins

Multiple device
Plugins

#ONOSProject

ONOS Distributed Architecture

● Distributed → Set up as a cluster of instances
● Symmetric → Each instance runs identical software and

configuration
● Fault-tolerant → Cluster remains operational in the face of

node failures
● Location Transparent → A client can interact with any

instance. The cluster presents the abstraction of a single
logical instance

● Dynamic → The cluster can be scaled up/down to meet
usage demands

● Raft consensus → Replicated State Machine

20

#ONOSProject

ONOS 1 ONOS 2 ONOS 3

ONOS Cluster

21

#ONOSProject

ONOS 1 ONOS 2 ONOS 3

Master Standby

ONOS Cluster

22

#ONOSProject

ONOS 1 ONOS 2 ONOS 3

ONOS Cluster

23

#ONOSProject

ONOS Distributed Primitives
● EventuallyConsistentMap<K, V>

○ Map abstraction with eventual consistency guarantee
● ConsistentMap<K, V>

○ Map abstraction with strong linearizable consistency
● LeadershipService

○ Distributed Locking primitive
● DistributedQueue<E>

○ Distributed FIFO queue with long poll support
● DistributedSet<E>

○ Distributed collection of unique elements
● AtomicCounter

○ Distributed version of Java AtomicLong
● AtomicValue<V>

○ Distributed version of Java AtomicReference

24

#ONOSProject

State Management in ONOS
● Core platform feature
● Applications can focus on business logic
● ONOS exposes a set of primitives to cater to different use cases
● Primitives span the consistency continuum

share nothing strongweak

25

● Eventually Consistent
○ Reads are monotonically consistent

● Low overhead reads and writes
○ 2-3 ms latency for reacting to network events

#ONOSProject

Northbound

26

NB Core API

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

AppsApps

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

NB Core API

Multiple device
Plugins

Multiple device
Plugins

Multiple device
Plugins

Multiple device
Plugins

#ONOSProject

Key Northbound Abstractions
● Network Graph

○ Directed, cyclic graph comprising of infrastructure devices,
infrastructure links and end-station hosts

● Flow Objective
○ Device-centric abstraction for programming data-plane flows

in version and vendor-independent manner

● Intent
○ Network-centric abstraction for programming data-plane in

topology-independent manner

27

#ONOSProject

Intent Framework
• Provides interface that focuses on what should be

done rather than how it is specifically programmed
→ network-centric programming abstraction

• Abstracts unnecessary network complexity from
applications → device-agnostic behavior

• Maintains requested semantics as network changes

→ persistency

• High availability, scalability and high performance

28

#ONOSProject

Intent Example
Host to Host Intent

29

#ONOSProject

Intent Example
Host to Host Intent

Intent Service API

submit()

30

#ONOSProject

COMPILATION

Path IntentPath Intent

Host to Host Intent

31

Intent Example

#ONOSProject

COMPILATION

INSTALLATION

Flow Rule Batch Flow Rule Batch

Flow Rule BatchFlow Rule Batch

Path IntentPath Intent

Host to Host Intent

32

Intent Example

#ONOSProject

Southbound

33

NB Core API

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

AppsApps

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

NB Core API

Multiple device
Plugins

Multiple device
Plugins

Multiple device
Plugins

Multiple device
Plugins

#ONOSProject

Southbound protocols:

● OpenFlow 1.0-1.3
● OVSDB
● NETCONF + YANG
● SNMP
● P4 → bmv2
● BGP, ISIS, OSPF
● PCEP
● REST
● LISP

Southbound overview

34

ONOS Distributed Core

SB Core API

NB Core API

Apps

Protocols and Drivers

#ONOSProject

ONOS SB architecture outline

Driver
● On-demand activation
● Define device’s capabilities
● Encapsulate specific logic and code

35

Goals of ONOS southbound:
● Abstractions, modularity, interoperability
● Live use of new devices
● Customization without changing the core
● Hidden complexity to upper layers

<driver name="default "manufacturer="ON.Lab"

hwVersion="0.0.1" swVersion="0.0.1">

 <behaviour api=InterfacePath

 impl=ImpementationPath />

</driver>

#ONOSProject

Applications

36

NB Core API

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

AppsApps

Distributed Core
(state management, notifications, high-availability & scale-out)

SB Core API

NB Core API

Multiple device
Plugins

Multiple device
Plugins

Multiple device
Plugins

Multiple device
Plugins

#ONOSProject

Developing ONOS applications
ONOS applications:
● Interact with the northbound Java or REST interface
● Device and protocol agnostic
● Augment ONOS though modularity
● Provide GUI, REST, CLI and distributed stores.
● Shape the network.
● Easy to start with auto generated basic code via maven

archetypes.

37

#ONOSProject

Example Applications
● SDN-IP Peering

○ Abstracts the SDN network as a BGP Autonomous System

● Video Streaming / IpTV
○ Establish multicast forwarding from a sender to set of receivers

● Virtual Network Gateway (vBNG)
○ Provide connectivity between a private host and the Internet

● Bandwidth Calendaring
○ Establish tunnels with bandwidth guarantees between two points at a

given time

● Multi-level (IP / Optical) Provisioning
○ Provision optical paths/tunnels with constraints

38

#ONOSProject 39

Demo

#ONOSProject

Deployments
&

Use Cases

40

#ONOSProject 41

Motivation and Goals

#ONOSProject 42

Global SDN Deployment Powered by ONOS

OpenFlow

OpenFlow

OF

Q3 2015
ONOS Deployment in Australia

OpenFlow

Q3 2015
Korea announces the first
ONOS deployment

Q4 2015
ONOS deployed in Korea

Q4 2015
First ONOS

production deployment
in South America

Q1-Q2 2015
First ONOS Deployments
South America, US, EU

Q4 2015 – New connections
Sidney – Seattle - Miami
Sao Paolo – Amsterdam

Q1 2016
NCTU / Taiwan
deploys ONOS

Q1 2016 – New connections
Miami - Korea

Miami - Taiwan
Korea - Taiwan

#ONOSProject 43

Enabling network innovation with new apps

Castor
● Provides L2/L3 connectivity for Internet Exchange Points (SDXs).
● Developed and deployed in AARNET.

SDX L2/L3
● Provides L2/L3 connectivity for Internet Exchange Points (SDXs).
● Developed and deployed by GEANT.

VPLS
● L2 broadcast overlay networks on demand.
● Ready to be deployed at AmLight.

SDN-IP
● Transforms a SDN into a transit IP network.
● SDN AS uses BGP to communicate with neighbors.
● L3 connectivity without legacy routers.
● Deployed by AmLight, Internet2 (upgrading), KREONET, NCTU.

#ONOSProject

CORD: Central Office Re-architected as a Datacenter

CORD:
● Combines SDN, NFV, Cloud with commodity infrastructure and open building

blocks to deliver datacenter economies of scale and cloud-style agility to
service provider networks

● Allows service providers to build an underlying common infrastructure in
Central Office with white boxes, ONOS (SDN Control Plane), OpenStack
(Virtual infrastructure mgmt), XOS (Services mgmt), open commodity
hardware, OF-enabled OLT MAC and G.fast DPU

● Enables organizations to build the services and solutions for their customers.
● R-E-M-A variants upon the CORD platform.

44

#ONOSProject 45

CORD Mission: Deliver to Service Providers

CO is a service provider’s “gateway” to its customers
● CO represents a great vantage point for a service provider: it enables new

services to users!

Economies of a datacenter
● Infrastructure built with a few commodity building blocks using open source

software and white box.

Agility of a cloud provider
● Software platforms that enable rapid creation of new services.

#ONOSProject 46

Community

#ONOSProject

ONOS Ecosystem

ON.LAB COLLABORATORS COMMUNITYSERVICE PROVIDER
PARTNERS

VENDOR
PARTNERS

47

#ONOSProject

Quarterly Releases

Quarterly ONOS releases:

● Avocet (1.0.0) - 2014-12
● Blackbird (1.1.0) - 2015-03
● Cardinal (1.2.0) - 2015-06
● Drake (1.3.0) - 2015-09
● Emu (1.4.0) - 2015-12
● Falcon (1.5.0) - 2016-03
● Goldeneye (1.6.0) - 2016-06
● Hummingbird (1.7.0) - 2016-09

Currently working on
Ibis - 1.8.0

48

#ONOSProject

How to get involved
● Open Source software → scratch your own itch
● Bug Bounty → start small with a simple bug

○ Jira bugs
● Application or Use Case → create your own app to deploy your use case

○ Creating and deploying and ONOS App and Template application tutorial
● Brigades → dynamic configuration, virtualization, GUI, deployments

○ Brigades wiki
● Collaborator proposal → create, use and maintain your own ONOS subsystem

Ask us:

Andrea Campanella → andrea@onlab.us

Carmelo Cascone → carmelo@onos-ambassadors.org

Andrea Biancini → andrea.biancini@onos-ambassadors.org

49

https://jira.onosproject.org/secure/RapidBoard.jspa?rapidView=1&view=planning.nodetail&quickFilter=82
https://jira.onosproject.org/secure/RapidBoard.jspa?rapidView=1&view=planning.nodetail&quickFilter=82
https://wiki.onosproject.org/display/ONOS/Creating+and+deploying+an+ONOS+application
https://wiki.onosproject.org/display/ONOS/Template+Application+Tutorial
https://wiki.onosproject.org/display/ONOS/Creating+and+deploying+an+ONOS+application
https://wiki.onosproject.org/display/ONOS/Brigades
https://wiki.onosproject.org/display/ONOS/Brigades
mailto:andrea@onlab.us
mailto:carmelo@onos-ambassadros.org
mailto:andrea.biancini@onos-ambassadors.org

#ONOSProject

Further reading
ONOS website:
http://onosproject.org
Tutorials, documentation and general reading at:
https://wiki.onosproject.org/
ONOS Github:
https://github.com/opennetworkinglab/onos
Setup Tutorial
https://wiki.onosproject.org/display/ONOS/Installing+and+Running+O
NOS
Screencasts:
https://wiki.onosproject.org/display/ONOS/Screencasts

50

http://onosproject.org
http://onosproject.org
https://wiki.onosproject.org/
https://wiki.onosproject.org/
https://github.com/opennetworkinglab/onos
https://github.com/opennetworkinglab/onos
https://wiki.onosproject.org/display/ONOS/Installing+and+Running+ONOS
https://wiki.onosproject.org/display/ONOS/Installing+and+Running+ONOS
https://wiki.onosproject.org/display/ONOS/Installing+and+Running+ONOS
https://wiki.onosproject.org/display/ONOS/Screencasts
https://wiki.onosproject.org/display/ONOS/Screencasts

#ONOSProject Join the journey @ onosproject.org

Software Defined Transformation of Service Provider Networks

51

#ONOSProject

Performance

52

#ONOSProject

Switch Up Latency

● Most of the time is spent waiting for
the switch to respond to a features
request. (~53ms)

● ONOS spends under 25ms with most
of it’s time electing a master for the
device.

○ Which is a strongly consistent
operation

53

#ONOSProject

Switch Down Latency

● Significantly faster because there is
no negotiation with the switch

● A terminating TCP connection
unequivocally indicates that the
switch is gone

54

#ONOSProject

Link Up/Down Latency

● The increase from single to multi instance is
being investigated

● Since we use LLDP to discover links, it takes
longer to discover a link coming up than going
down

● Port down event trigger immediate teardown
of the link.

55

#ONOSProject

Flow Throughput results

● Single instance can install over 500K
flows per second

● ONOS can handle 3M local and 2M
non local flow installations

● With 1-3 ONOS instances, the flow
setup rate remains constant no
matter how many neighbours are
involved

● With more than 3 instances injecting
load the flow performance drops off
due to extra coordination requires.

56

#ONOSProject

Intent Latency Results
● Less than 100ms to install or withdraw a batch of intents
● Less than 50ms to process and react to network events

○ Slightly faster because intent objects are already replicated

57

#ONOSProject

Intent Throughput Results
● Processing clearly scales as cluster size increases

58

