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Abstract—Lawmakers and regulatory bodies around the world
are asserting Network Neutrality as a fundamental property of
broadband Internet access. Since neutrality implies a comparison
between different users and different ISPs, this opens the question
of how to measure net neutrality in a privacy-friendly manner.

This work describes a system in which users convey throughput
measurements for the different services they use to a crowd-
sourced database and submit queries testing their measure-
ments against the hypothesis of a neutral network. The usage
of crowdsourced databases poses potential privacy problems,
because users submit data that may possibly disclose information
about their own habits. This leaves the door open to information
leakages regarding the content of the measurement database.

Randomized sampling and suppression of small clusters can
provide a good tradeoff between usefulness of the system, in
terms of precision and recall of discriminated users, and privacy,
in terms of differential privacy.

Index Terms—Differential Privacy; Network Neutrality;

I. INTRODUCTION

The Network Neutrality principle aims at protecting and
maintaining open, uninhibited access to legal online content
without broadband Internet access providers being allowed to
block, impair, or establish fast/slow lanes to lawful content.

In case of non-equal treatment of data traffic transmitted
over the Internet, it is possible that an ISP is discriminating a
user with respect to a service; it means that the performance
experienced by the user is worse than the network performance
experienced by other users accessing the same service with
different providers.

Several policy-makers, most notably the FCC in the USA
and the European Parliament in the EU, forbid discrimination
by user or by service. Although the definition of Network
Neutrality implies some measurement mechanism, there is no
consensus on what are the mechanisms to detect whether some
form of discrimination is in place. Researchers have proposed
various approaches based on passive measurements campaigns
by large content providers, on active measurements by public
or private entities [1][2], or on crowdsourced measurements
collected by the users [3][4][5]. In these last approaches, users
submit measurement reports to a central server, which runs
algorithms to verify the presence of discrimination by the ISP.

The usage of crowdsourced databases poses potential pri-
vacy problems, because users submit data that may possibly
disclose information about their own habits. Therefore, it is

necessary to put in place mechanisms that limit how much
the collected data can be used to infer information beyond the
intended meaning of the data collection.

This paper considers a scenario in which a user agent
running on the user device collects passive measurements of
the user activity and sends reports to a server in the form of
a tuple of attributes. Periodically, the server makes a snapshot
of the collected data and stores them in a database. Upon
reception of a new tuple, the server provides the binary answer,
“false” if there is no evidence of net neutrality violation,
or “true” if that specific measurement might be due to net
neutrality violation. Multiple measurements are then necessary
to achieve statistical significance.

There are two interfaces which require sanitization for
privacy protection: the data collection step, in which users
submit their data, and the query response, in which the answer
is calculated and provided to the users. This paper focuses on
the second step and provides the following new contributions:
(1) the proof that a compliance test over a clustered database
of subsampled data provides privacy in a differential sense;
(2) the evaluation of the tradeoff between privacy and effec-
tiveness in identifying net neutrality violations.

The rest of the paper is organized as follows. Section II
provides a literature review on works about net neutrality
and differential privacy; Section III introduces definitions
and assumptions made to develop our system and provides
a description of the database construction, the sanitization
algorithm and the attack scenario; Section IV evaluates the
privacy bounds provided by our proposed system in general
and in case of Gaussian model; Section V discusses the
validation system and the obtained results in terms of precision
and recall; Section VI sums up the main contributions of the
paper.

II. RELATED WORK

A few systems issuing the evaluation of network neutrality
have recently been proposed in the scientific community:
The principle of the NANO system [5] is to establish a
causal relationship between an ISP policy and the observed
degradation of performance for a service using only passively
collected data. It introduces the problem of privacy but it
does not define the concept theoretically proving its guarantee.



Unlike NANO, we provide a formal definition of differential
privacy in a crowdsourced scenario.

Neubot [2] is an open source application, voluntarily in-
stalled by the users, that measures the characteristics of
transmissions across the Internet. This tool does not detect
explicitly net neutrality violations, but collects results from
clients and continuously controls their performance. In ad-
dition, Neubot focuses on confidentiality that is guaranteed
by the encryption of data. Instead, we focus on privacy
preservation through an anonymization mechanism.

Glasnost [6] is a system that improves network transparency
by enabling ordinary Internet users to detect whether their
ISPs apply differentiated treatments to flows of specific appli-
cations. The aim of Glasnost is making any differentiation
transparent to users using throughput as measure of flow
performance like in our system, but it does not deal with
privacy issues.

DiffProbe [7] is an active probing method that aims to detect
discrimination when it actually affects user traffic. Also in
this work there is no privacy definition and the considered
metrics for assessing discriminations are delay and loss, but
not connection throughput.

The notion of differential privacy was first introduced by
the seminal work by Dwork et al. in [8]. Differential privacy
aims at guaranteeing that the removal or addition of a single
item in a statistical database has negligible impact on the
outcome of any query on that database. The author gives a
formal definition of differential privacy as a measure of the
tradeoff between the precision of the aggregate data and the
probability of identifying the contributions of individual data
inside the aggregate.

In this paper, we will apply a sanitization approach similar
to the one proposed in [9], which shows that a k-anonymity-
based sanitization algorithm can satisfy differential privacy
when preceded by a random sampling of the database entries.

III. SYSTEM MODEL

A. Basic Mechanism

We assume that each user sends a tuple q containing the
following attributes: date and time, location, type of applica-
tion and/or server, ISP, subscribed broadband service tier, and
one or more measurements evaluating the service quality (e.g.
throughput, latency, or jitter).

We adopt the basic assumption of NANO [5], i.e. that, all
other things being equal, the majority of ISPs complies with
net neutrality rule. Therefore, a net neutrality violation can
be detected by comparing the performance received by the
subscribers of a given ISP to the performance received by
the subscribers of all other ISPs, after taking into account the
effect of any confounding factors.

Many factors other than differentiated treatment may affect
the performance of a particular service or application. For
example, a service may be slow due to overload at a particular
time of day or it might be supplied in a location characterized
by worse performance. Similarly, the performance might de-
pend on software or hardware, or other network peculiarities.

Fig. 1. The attack scenario

Consequently, we consider ISP as the treatment variable,
any performance measurement, in particular the throughput, as
an outcome variable, and any other parameters such as time,
location and network speeds as the confounding variables.
A confounding variable (or simply confounder) is one that
correlates both with the considered treatment variable (i.e.,
the ISP) and the outcome variable (i.e., the performance).

Similarly to [5], we use stratification to gather confounding
variables together. Stratification places measurements into
clusters such that all the samples in each cluster have “similar”
values for the confounding variables. Inside each cluster,
the treatment and the outcome variables can be considered
independent of the confounding variables. The procedure that
maps samples into clusters is called generalization. In this
work, we consider data independent generalization, meaning
that the clusters are defined before the data are collected.
In particular, we define upper and lower thresholds for each
confounding attribute and we define a cluster as the set of all
instances whose confounding attributes all fall within the same
threshold bounds.

We consider a semi-honest adversary A. The adversary
adheres to the protocol rules, but it can freely choose its
input and store all received messages with the aim of inferring
additional information w.r.t. what is implied by the knowledge
of the query answers.

In particular, as depicted in Figure 1, the adversary wants
to ascertain whether an arbitrarily chosen tuple xr is present
or not in the database X . Conversely, the database is assumed
to be an honest entity.

B. Database Construction and Sanitization

A database X is a collection of N data rows x1, . . . , xN
containing elements drawn from a public universe U . We
assume that the content of X does not change in a given time
frame. Each data row consists of a set of L values taken from
a domain D = D1 × · · · ×DL.

The database users interact with the database by submitting
queries q1, . . . qQ, which are themselves drawn from U . The
database answer is a binary value representing whether the
submitted tuple is compatible or not with the tuples already in
X . Similarly to [5], the parameters in domain D are divided
in three classes: treatment, confounder, and outcome. For the
sake of simplicity, we will consider the case in which there is
a single treatment variable D1 and a single outcome variable
DL. The other variables are the confounders.

A Data Independent Generalization (DIG) function g(x)
takes as input a tuple from U and associates it to a cluster
of similar tuples. For the sake of simplicity, we assume that



each cluster can be labeled with a natural number. It is worth
noting that the generalization function g(x) takes into account
neither the treatment nor the outcome variables. We assume
that the clustering parameters are given.

Each cluster is also associated to a compliance interval,
calculated from the outcome field of the tuples in X that
are part of the same cluster and have a different treatment
variable. In practice, we compare the user own measurements
to measurements from similar users having a different ISP.

What is the most accurate way to calculate a compliance
interval is a matter of study and, in general, it is necessary that
a significant number of repeated measurements fall outside the
compliance interval before one can conclude that some kind
of non-neutral traffic treatment is in place. In this paper we
calculate the compliance interval for cluster i as: [Mi(X) −
σ,Mi(X) + σ] where Mi(X) denotes the sample mean of
the outcome field of the tuples in X that fall in cluster i (i.e.,
with equal values of confounders), and σ is a system parameter
controlling the tradeoff between detection, precision and recall.
The query q returns False (0) if the outcome field of q falls
inside the compliance interval, True (1) otherwise.

We consider the following sanitization building blocks:
• a β-sampling mechanism that samples database X with

probability β;
• a Data Independent Generalization (DIG) function g(x)

that divides into intervals the confounding variables in
order to obtain clusters in which samples have equal
values for the generalized attributes;

• a k-suppression mechanism, which eliminates from X all
the clusters having fewer than k tuples.

First of all the database X is sampled through the β-
sampling algorithm, i.e. each tuple is dropped with probability
1 − β. After that, the generalization mechanism g(x) takes
as input the sampled version of X and produces a new
dataset linking user’s measures to a cluster based on common
confounding variables. Finally we apply the k-suppression
algorithm to remove any cluster containing less than k tuples
and we obtain the new database X ′.

C. Privacy Definition

We evaluate privacy in the Differential Privacy model [10].
Let A(q,X) the result of submitting the query q to X .
The system consisting of the database and the sanitization
algorithm provides (ε, δ)-differential privacy if, for all q, xr
and b, the following holds with probability no smaller than δ:

e−ε ≤ Pr[A(q,X) = b]

Pr[A(q,X\xr) = b]
≤ eε (1)

where xr is a tuple from X and X\xr is the database X with
the tuple xr removed.

IV. PRIVACY EVALUATION

The effectiveness of the Sanitization Algorithm in providing
privacy depends on the underlying data model. In this Section,
we identify the conditions that guarantee (ε, δ)-differential
privacy under suitable assumptions. We consider the scenario

of a single query. In case of multiple queries, exploiting the
composition theorem [10], the sanitization algorithm provides
(Qε,Qδ)-differential privacy, with Q the number of queries
submitted to X .

A. General Case
In the general case, we assume that, for all the tuples in

each cluster, the outcome variable is drawn from an unknown
distribution with probability density function fγi(x), where i
is the cluster label. We state the following theorem. In the
appendix, we provide the main reasoning. The full proof is
available in an extended version of the paper.

Theorem 1. The system consisting of the database and the
sanitization algorithm provides (ε, δ)-differential privacy with

ε = ln (Ni(1− β) +K′) ∀ Ni ≥ k (2)

δ =

[
1−

k−1∑
l=0

Bi(Ni, β, k)

]
k−1∑
j=0

Bi(Ni − 1, β, k)+

k−1∑
l=0

Bi(Ni, β, k)

1− k−1∑
j=0

Bi(Ni − 1, β, k)

 (3)

The constant Ni is the size of cluster i and the constant k is
the minimum cluster size set by the suppression algorithm. The
constant K′, defined in (8), depends on fγi(x) and approaches
zero as Ni grows. The function Bi(Ni, β, k) is the binomial
cumulative density function for k successes out of Ni trials
with success probability β.

As Ni grows, K′ becomes negligible and ε can be bounded
as:

ε = ln (Ni(1− β)) ∀ Ni ≥ k (4)

Figure 2 shows the upper bound of ε in (4) for different
values of β and Ni, which assumes the value of minimum
cluster size k.
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Fig. 2. Upper bound of the privacy parameter ε in the general case.

Figure 3 depicts the value of δ in (3) with increasing level
of anonymization and cluster size Ni = 100. The probability δ
keeps small values for significantly small sampling probability
β ≤ 1%. However, when Ni ∼ k/β we underline that δ
assumes higher values, in this case it is necessary to force
a limit in the number of queries Q otherwise the privacy is
hardly guaranteed.
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Fig. 3. Privacy parameter δ in the general case for a cluster of Ni = 100
elements

B. Gaussian Model

Theorem 1 proves that the sanitization algorithm provides
privacy, but the ε bound resulting from (4) and plotted in
Figure 2 is of limited practical use, since it is too large and
becomes even larger as k grows. A more useful estimation
can be obtained by making stronger assumptions on the
distribution of the data in the cluster. We replace in (5) the well
known probabilistic functions of a Gaussian distribution with
mean value µ and standard deviation σ, once both concerning
downloading and once both concerning video streaming, the
two service types introduced in Section V.

We use Monte Carlo method based on random sampling in
order to obtain numerical results. Thus we generate multiple
realizations of X and X\xr and we apply the sanitization
mechanism with different value of β and k in order to obtain
the epsilon bounds in Figure 4. We average the different
simulations and we verify the ratio in (1) for several queries
q choosing the maximum value.
At this point, in Figure 4 we plot the decreasing trend of the
value of epsilon and the resulting gain in privacy level versus
the increasing anonymization level.
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Fig. 4. Privacy parameter ε in the case of normally distributed data and cluster
size Ni = 100

TABLE I
VARIABLES AND GENERALIZATION RULES

Treatment variable
ISP –

Confounder variables
time hour and day of the week
longitude areas of five degrees
latitude areas of five degrees
up steps of ten megabit per second
down steps of ten megabit per second
service four different services

Outcome variable
throughput –

V. NUMERICAL ASSESSMENT

A. Validation Method

We evaluate the privacy-precision tradeoff by applying the
technique described in this paper to the measurements pro-
vided by SamKnows during the project Measuring Broadband
America [1].
The raw data collected from the measurement database for
each active metric are made available by month in tarred
gzipped files. We use the September 2013 data validated by
SamKnows through a work of anomalies’ removal, such as IP
address out of valid range or throughput inconsistent with the
service tier provisioned by the ISP.
We exploit files related to download speed, web browsing,
video streaming and voice over IP. For all these services
we consider the following attributes: unit profile identifier,
time test finished and running total of throughput. Then,
information regard service tiers (ISP, download speed, upload
speed) and regard position (longitude, latitude) is included in
unit profile and unit census block files, respectively.

Based on the above mentioned attributes, fifty millions of
database entries are classified in different categories, as shown
in Table I.

We try to identify when service performance differs across
ISPs but confounding factors are equal. A big challenge in
designing such a system is to identify the confounding factors
and create an environment where all confounding factors are
equal or independent of the ISP or service performance.

In order to validate our detection mechanism we randomly
select an ISP and trim the corresponding throughput measure-
ments similarly to a policing algorithm. We set at one Megabit
per second the threshold at which throughput is truncated
according to a feasible policing procedure.

Then, we randomly partition the dataset in training set
(which includes 85% of the available tuples) and a test set. The
training set becomes the database X , which is then divided in
clusters and sanitized in order obtain the new database X ′.
We set a boolean variable ground truth to True in case of
alteration or to False in case of neutral network. Conversely,
the attribute category assumes value True in case of detection
of a probable net neutrality violation or value False when the
measure falls within the compliance interval.



B. Results

We start applying the algorithm to the full database, with
no sanitization, in order to assess the baseline performance of
the detection technique. We label this case as “baseline” in the
following figures. The resulting precision, defined as the ratio
of the correct detections of net neutrality violations to the total
detections, depends on the service. In case of the download
service, it is about 58%, while for the video streaming service
it is about 29%. These figures, which are not very good in
absolute terms, refer to a single query. In order to declare
that a violation is indeed occurring, it is necessary to collect
multiple queries over multiple days. In turn, the number of
necessary queries depends on the extent of the violation. The
correct identification of the observation interval is out of the
scope of this paper.

The recall in the baseline scenario, defined as ratio of the
number of detections by the number of violations in the data, is
more than 99% for the downloading service and about 55% for
the video streaming service. The relatively low performance
for the video streaming service is due to the fact that the
service comprises heterogeneous streams with different speeds
that depend on the receiver device and on the resolution of
the video stream. For a more accurate detection of violations
in the video streaming service it is therefore necessary to
consider other confounding variables such as the resolution
of the stream. Unfortunately, these variables are difficult to
obtain and were not available in our data. Nevertheless, since
our the goal is to study how sanitization impacts on the recall,
we will show the impact of the various sanitization parameters
with respect to the baseline scenario, which represents the best
result.
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Fig. 5. Precision versus the sanitization parameters for the downloading
service

Figures 5 and 6 show the precision for the downloading
and the video streaming services, respectively, versus the
sanitization parameters β and k. The figures also show the
baseline precision. As the sampling parameter β grows, the
precision also grows, with bad performance for β ≤ 0.1%
and with results very similar to the baseline for β ≥ 10% for
all the values of k.

Figures 7 and 8 show the recall for the downloading and in
the video streaming services, respectively, versus the sanitiza-

10−3 10−2 10−1

0

10

20

30

Sampling parameter β

Pr
ec

is
io

n
[%

] k = 10
k = 20
k = 30
k = 40
k = 50
baseline

Fig. 6. Precision versus the sanitization parameters for the video streaming
service
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Fig. 7. Recall versus the sanitization parameters for the downloading service

tion parameters β and k. The performance of the sanitization
algorithm in terms of recall is similar to the performance
in terms of precision, with good results for β ≥ 10% and
significant recall loss for smaller β. In addition, for large β the
impact of k is negligible, but for small values of β we notice
increasingly worse results for larger k. This is mainly due to
the somehow arbitrary decision to declare that a measurement
is not a violation if the relevant cluster has been suppressed
and the number of suppressed clusters is large if β is small or
k is large. A different assumption, however, would negatively
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impact the precision, which is already critical.
Finally, with data at our disposal, we prove the existence

of finite values of β, between 10% − 1%, and finite values
of k, near 30, that make possible to reach both good quality
parameters, in terms of precision and recall, and good privacy
bounds, ε and δ, of the detection technique.

VI. CONCLUSION

We describe an algorithm for the crowdsourced detection of
possible net neutrality violations. We also consider the applica-
tion of a sanitization technique of the collected measurements
in order to protect sensitive data of users exploiting such a
system.

We formally prove that data independent generalization,
subsampling, and suppression of small clusters, make it pos-
sible to achieve privacy under the differential privacy model.

We also assess the effectiveness of the algorithm in detecting
neutrality violations by using a large dataset of measurements
of broadband traffic by home users. We show that a small
subsampling along with the elimination of very small clusters
is capable of providing minimal performance loss and, at the
same time, provide a good degree of privacy.

APPENDIX
PROOF OF THEOREM 1

Let Ni be the number of tuples of X belonging to the same
cluster i as xr. We assume that these tuples are drawn from an
unknown distribution with probability density function fγi(x).
Let Y and Z be the number of tuples selected by the sampling
algorithm over the databases X and X\xr. Clearly Y and
Z are drawn from a binomial distribution with parameters
(Ni, β) and (Ni − 1, β) respectively. Let y1, . . . , yY be the
tuples sampled from X and z1, . . . , zZ be the tuples sampled
from X\xr. We distinguish three different cases:

1) if Y < k and Z < k, then the cluster is removed from
both databases X and X\xr. This case is trivial.

2) if Y ≥ k and Z ≥ k, then no cluster is removed;
3) otherwise, the cluster is removed only in one database,

in X or in X\xr.
Case 2. No cluster is removed: We prove first the case

with b = 0; the case with b = 1 is similar. We have that
A(q,X) = 0 and A(q,X\xr) = 0 if and only if

−σ < 1
Y

∑Y
j=k yj − q < σ ∀q

−σ < 1
Z

∑Z
j=k zj − q < σ ∀q

Let SNi be the mean of independent random variables with
probability density function fγi(x) sampled with probability β
from a population of Ni. Let fSNi (x) be its probability density
function and FSNi (x) be its cumulative distribution function.
We have:

e−ε ≤
∫ q+σ
q−σ fSNi (x)dx∫ q+σ
q−σ fSNi−1(x)dx

≤ eε ∀q (5)

We consider the right inequality of (5), for which we have:

FSNi (q+σ)−FSNi (q−σ)−e
εFSNi−1(q+σ)+e

εFSNi−1(q−σ) ≤ 0
(6)

Let φγi(ω) be the characteristic function of X’s tuples and
φSNi (ω) be the characteristic function of SNi . Equation (6)
can be rewritten as:

1

2π

{∫ ∞
−∞

e−j(q−σ)ω − e−j(q+σ)ω

jω
βNiφγi

(
ω

Ni

)Ni
dω +∫ ∞

−∞

e−j(q−σ)ω − e−j(q+σ)ω

jω

Ni−1∑
j=k

φγi

(
ω

j

)j
βj(1− β)Ni−1−j ·(

Ni − 1

j

)[
Ni(1− β)
Ni − j

− eε
]
dω

}
≤ 0 (7)

We observe that the last term in the summation, with index
j = Ni − 1, is the largest. In addition, we define the constant
K′ as:

K′ =
β
∫∞
−∞

e−j(q−σ)ω−e−j(q+σ)ω
jω

φγi

(
ω
Ni

)Ni
dω

(Ni − 1)
∫∞
−∞

e−j(q−σ)ω−e−j(q+σ)ω
jω

φγi

(
ω

Ni−1

)Ni−1

dω

(8)
So we can obtain the new equation:

eε ≥ Ni(1− β) +K′ ∀ Ni ≥ k (9)

A similar bound can be found for the left inequality of
(5), but can be ignored since (9) always provide a stricter
condition.

Case 3. The cluster is removed only in one database: In
this scenario it is possible to find a condition under which
(ε, δ)-differential privacy can be satisfied with the same ε
calculated in previous case and with δ reflecting the probability
that this case occurs, which is:

δ = Pr{Y ≥ k, Z < k}+ Pr{Y < k,Z ≥ k}

After simple substitutions, we obtain (3).
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